中国物联行业第一网——环球物联网
主页 > 物联资讯 > 内容

解决自动驾驶定位问题的三种思路

发布时间:2019-05-22   来源:环球物联网    
字号:

在自动驾驶技术问题中,定位技术(自身定位以及对周围环境相对位置的认知)似乎是无人驾驶汽车最难掌握的技术,这与城市的动态性质有关。例如施工路面、封闭道路、新标志和缺失的道路标志等,都是这种动态性和不确定性的例子。人类面对以上随时随地可能发生改变的因素都会感到困惑,更不用说机器了。目前没有方法可以完美地解决自动驾驶汽车的定位问题,但以下几种是当前最为有效也最有希望解决问题的办法。不同公司有不同的倾向性选择,本文将根据具体的公司策略对三种定位方法进行介绍。

自从特斯拉和Waymo等公司出现以来,车企对自动驾驶技术的关注愈发增加。这种情况在2018年更甚,从而加速了无人驾驶汽车尽快落地的可能。例如,通用汽车公司在旧金山的员工已经用上了没有方向盘或踏板的cruise;福特、大众、丰田和奔驰也都在自动驾驶竞争之列;上个月,特斯拉在芯片发布会上宣布,到2020年他们将制造出完全自动驾驶汽车。

无人驾驶的实现前途光明,但道路曲折。目前自动驾驶仍然面临很多难题,例如需要快速而连续地分析数据流、需要做对机器来说很繁琐但对人类来说只是鸡毛蒜皮的一些小事等。具体来说,物体检测、距离、速度、定位和交通法规等都是在驾驶过程中做决策时需要考虑的因素。为了达到SAE标准中的L5级别,计算机驾驶系统需要能够执行上述所有基本任务,找到针对不同问题的技术解决方案。以下列出了几种主要的自动驾驶技术难题及解决方案:

距离:激光雷达(光探测和测距)

速度:雷达(无线电探测器)

物体探测:相机、图像处理和机器学习

交通法规:物体检测(用于交通信号灯和标志)、图像处理(用于车道检测)和对本地数据的访问

路径规划:软件算法(如A*搜索算法)

定位:同时定位与地图创建(Simultaneous Localization and Mapping,SLAM)或预先制作的三维地图

在上述所有问题中,定位技术(自身定位以及对周围环境相对位置的认知)似乎是无人驾驶汽车最难掌握的技术,这与城市的动态性质有关。例如施工路面、封闭道路、新标志和缺失的道路标志等,都是这种动态性和不确定性的例子。人类面对以上随时随地可能发生改变的因素都会感到困惑,更不用说机器了。目前没有方法可以完美地解决自动驾驶汽车的定位问题,但以下几种是当前最为有效也最有希望解决问题的办法。不同公司有不同的倾向性选择,本文将根据具体的公司策略对三种定位方法进行介绍。

1.以特斯拉为代表的视觉SLAM定位

以特斯拉为例的一类企业倾向于使用基于视觉的Visual SLAM(简称VSLAM)技术进行定位,他们将尽可能多的视觉传感器置入汽车中,不依靠预先录制的地图,而是希望将图像处理和机器学习结合起来,让特斯拉车辆能够对周围环境做到实时了解。特斯拉车辆随时随地都在学习并与其他车辆分享知识。他们依靠周围的实时环境数据而不是历史数据,不存在依赖过时地图而出错的风险。

特斯拉的目标非常明确,即建造可以在任何条件下驾驶的车辆而不受周围环境的影响。前段时间特斯拉的芯片发布会上,因马斯克diss激光雷达还引起了一场轩然大波。马斯克说,使用激光雷达的定位方法摆脱了“丑陋,昂贵且不必要”的绘图设备,为此付出的代价是在处理不确定性时更加依赖相机和软件。特斯拉人工智能高级主管 Andrej Karpathy 强调物理数据的作用是无法代替的,相对于利用激光雷达建立虚拟高精地图来说,特斯拉更相信现实的物理数据,看图比看雷达更真实

目前,使用VSLAM实现定位的自动驾驶车辆主要配备三类传感器:单目、双目(或多目)、RGBD。此外还有鱼眼、全景等特殊相机,由于在研究和产品中都属于少数在此不做介绍。就实现难度而言,这三类方法难易程度从难到易依次为:单目视觉、双目视觉、RGBD。在定位过程中,VSLAM自动驾驶车辆从一个未知环境中的未知地点出发,在运动过程中通过以上这些视觉传感器观测定位自身位置、姿态、运动轨迹,再根据自身位置进行增量式的地图构建,从而达到同时定位和地图构建的目的。定位和建图是两个相辅相成的过程,地图可以提供更好的定位,而定位也可以进一步扩建地图。VSLAM技术框架如下,主要包括感器数据预处理、前端、后端、回环检测、建图

2.以通用/奔驰/福特为代表的高精地图定位

×
织梦二维码生成器
环球物联网

图说天下